BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
stack overflow
Google stack overflow

Tag #stack overflow

82 papers:

ICSAICSA-2019-TianLB #architecture #case study #developer #how #smell
How Developers Discuss Architecture Smells? An Exploratory Study on Stack Overflow (FT, PL0, MAB), pp. 91–100.
ICSMEICSME-2019-WongSCH #corpus #fault #syntax
Syntax and Stack Overflow: A Methodology for Extracting a Corpus of Syntax Errors and Fixes (AWW, AS, SAC, AH), pp. 318–322.
MSRMSR-2019-AbricCCGM #community #development #question
Can duplicate questions on stack overflow benefit the software development community? (DA, OEC, MC, KG, SM), pp. 230–234.
MSRMSR-2019-AhmadC #case study
Impact of stack overflow code snippets on software cohesion: a preliminary study (MA, MÓC), pp. 250–254.
MSRMSR-2019-BafatakisBBSKOW #python
Python coding style compliance on stack overflow (NB, NB, WB, MCS, JK, GO, RW), pp. 210–214.
MSRMSR-2019-BaltesT0 #evolution #named
SOTorrent: studying the origin, evolution, and usage of stack overflow code snippets (SB, CT, SD0), pp. 191–194.
MSRMSR-2019-BandeiraMPM #analysis
We need to talk about microservices: an analysis from the discussions on StackOverflow (AB, CAM, MP, PHMM), pp. 255–259.
MSRMSR-2019-BangashSCWHA #case study #developer #machine learning #ml #what
What do developers know about machine learning: a study of ML discussions on StackOverflow (AAB, HS, SAC, AWW, AH, KA0), pp. 260–264.
MSRMSR-2019-DiamantopoulosS #evolution #mining #towards
Towards mining answer edits to extract evolution patterns in stack overflow (TD, MIS, ALS), pp. 215–219.
MSRMSR-2019-DietrichLD #case study #identification
Man vs machine: a study into language identification of stack overflow code snippets (JD0, MLR, ED), pp. 205–209.
MSRMSR-2019-JinS #empirical #what
What edits are done on the highly answered questions in stack overflow?: an empirical study (XJ, FS), pp. 225–229.
MSRMSR-2019-ManesB #developer #git #how #question #what
How often and what StackOverflow posts do developers reference in their GitHub projects? (SSM, OB), pp. 235–239.
MSRMSR-2019-Mondal0R #case study
Can issues reported at stack overflow questions be reproduced?: an exploratory study (SM, MMR0, CKR), pp. 479–489.
MSRMSR-2019-NishiCD
Characterizing duplicate code snippets between stack overflow and tutorials (MAN, AC, KD), pp. 240–244.
MSRMSR-2019-RahmanFI
Snakes in paradise?: insecure python-related coding practices in stack overflow (AR, EF, NI), pp. 200–204.
MSRMSR-2019-RahmanRPN
Cleaning StackOverflow for machine translation (MR, PCR, DP, TNN), pp. 79–83.
MSRMSR-2019-SoniN
Analyzing comment-induced updates on stack overflow (AS, SN), pp. 220–234.
MSRMSR-2019-Treude0 #git #modelling #predict #topic
Predicting good configurations for GitHub and stack overflow topic models (CT, MW0), pp. 84–95.
SCAMSCAM-2019-GeremiaBOLP
Characterizing Leveraged Stack Overflow Posts (SG, GB, RO, ML, MDP), pp. 141–151.
ECIRECIR-p2-2019-MaityPGBGM #framework #named #recommendation
DeepTagRec: A Content-cum-User Based Tag Recommendation Framework for Stack Overflow (SKM, AP, SG0, AB, PG, AM0), pp. 125–131.
ESEC-FSEESEC-FSE-2019-CaiWXH00X #generative #named #summary
AnswerBot: an answer summary generation tool based on stack overflow (LC, HW, BX, QH, XX0, DL0, ZX), pp. 1134–1138.
ICPCICPC-2018-BeyerM0P #automation #category theory
Automatically classifying posts into question categories on stack overflow (SB, CM, MP0, MDP), pp. 211–221.
MSRMSR-2018-BaltesDT008 #evolution #named
SOTorrent: reconstructing and analyzing the evolution of stack overflow posts (SB, LD, CT, SD0), pp. 319–330.
MSRMSR-2018-MajumderBBFM08 #case study #learning #mining #performance
500+ times faster than deep learning: a case study exploring faster methods for text mining stackoverflow (SM, NB, KB, WF0, TM), pp. 554–563.
MSRMSR-2018-NovielliCL #standard
A gold standard for emotion annotation in stack overflow (NN, FC, FL), pp. 14–17.
MSRMSR-2018-YinDCVN08 #learning #natural language
Learning to mine aligned code and natural language pairs from stack overflow (PY, BD, EC, BV, GN), pp. 476–486.
SANERSANER-2018-AhasanuzzamanAR #api
Classifying stack overflow posts on API issues (MA, MA, CKR, KAS), pp. 244–254.
SANERSANER-2018-LiuZ #mining #program repair
Mining stackoverflow for program repair (XL, HZ), pp. 118–129.
SANERSANER-2018-SilvaPM #detection
Duplicate question detection in stack overflow: A reproducibility study (RFGdS, KVRP, MdAM), pp. 572–581.
ESEC-FSEESEC-FSE-2018-Reinhardt0MK #api #git
Augmenting stack overflow with API usage patterns mined from GitHub (AR, TZ0, MM, MK), pp. 880–883.
ICSE-2018-0001URRK #api #case study #online #reliability
Are code examples on an online Q&A forum reliable?: a study of API misuse on stack overflow (TZ0, GU, AR, HR, MK), pp. 886–896.
ICSMEICSME-2017-TreudeR #comprehension
Understanding Stack Overflow Code Fragments (CT, MPR), pp. 509–513.
MSRMSR-2017-YangMSL #git #question
Stack overflow in github: any snippets there? (DY, PM0, VS, CVL), pp. 280–290.
SANERSANER-2017-AnMKA #framework #platform #question
Stack Overflow: A code laundering platform? (LA, OM, FK, GA), pp. 283–293.
SANERSANER-2017-MizobuchiT #detection
Two improvements to detect duplicates in Stack Overflow (YM, KT), pp. 563–564.
WICSAWICSA-2016-SolimanGSR #architecture #case study #community #developer
Architectural Knowledge for Technology Decisions in Developer Communities: An Exploratory Study with StackOverflow (MS, MG, ARS, MR), pp. 128–133.
ICSMEICSME-2016-ChenXH #named
TechLand: Assisting Technology Landscape Inquiries with Insights from Stack Overflow (CC, ZX, LH0), pp. 356–366.
MSRMSR-2016-0008S #gender
Recognizing gender of stack overflow users (BL0, AS), pp. 425–429.
MSRMSR-2016-AhasanuzzamanAR #mining
Mining duplicate questions in stack overflow (MA, MA, CKR, KAS), pp. 402–412.
MSRMSR-2016-BeyerP #android
Grouping android tag synonyms on stack overflow (SB, MP0), pp. 430–440.
MSRMSR-2016-YangHL #analysis #query
From query to usable code: an analysis of stack overflow code snippets (DY, AH0, CVL), pp. 391–402.
MSRMSR-2016-ZagalskyTGSP #case study #community #comparative #how
How the R community creates and curates knowledge: a comparative study of stack overflow and mailing lists (AZ, CGT, DMG, MADS, GPC), pp. 441–451.
FSEFSE-2016-FordSGP #identification
Paradise unplugged: identifying barriers for female participation on stack overflow (DF, JS0, PJG, CP), pp. 846–857.
ICSE-2016-TreudeR #api #documentation
Augmenting API documentation with insights from stack overflow (CT, MPR), pp. 392–403.
ICPCICPC-2015-BeyerP
Synonym suggestion for tags on stack overflow (SB, MP), pp. 94–103.
ICSMEICSME-2015-NagyC #fault #mining #query #sql
Mining Stack Overflow for discovering error patterns in SQL queries (CN, AC), pp. 516–520.
MSRMSR-2015-CalefatoLMN #mining
Mining Successful Answers in Stack Overflow (FC, FL, MCM, NN), pp. 430–433.
MSRMSR-2015-ChowdhuryH #mining #topic
Mining StackOverflow to Filter Out Off-Topic IRC Discussion (SAC, AH), pp. 422–425.
MSRMSR-2015-DiamantopoulosS #source code
Employing Source Code Information to Improve Question-Answering in Stack Overflow (TGD, ALS), pp. 454–457.
MSRMSR-2015-DuijnKB #quality
Quality Questions Need Quality Code: Classifying Code Fragments on Stack Overflow (MD, AK, AB), pp. 410–413.
MSRMSR-2015-ErcanSB #automation #predict
Automatic Assessments of Code Explanations: Predicting Answering Times on Stack Overflow (SE, QS, AB), pp. 442–445.
MSRMSR-2015-GantayatDPMS
The Synergy between Voting and Acceptance of Answers on StackOverflow — Or the Lack Thereof (NG, PD, RP, SM, VSS), pp. 406–409.
MSRMSR-2015-GoderieGGB #named #predict
ETA: Estimated Time of Answer Predicting Response Time in Stack Overflow (JG, BMG, BvG, AB), pp. 414–417.
MSRMSR-2015-HonselHG #evaluation
Intuition vs. Truth: Evaluation of Common Myths about StackOverflow Posts (VH, SH, JG), pp. 438–441.
MSRMSR-2015-JinYKCII #case study
Quick Trigger on Stack Overflow: A Study of Gamification-Influenced Member Tendencies (YJ, XY, RGK, EC, KI, HI), pp. 434–437.
MSRMSR-2015-Marder #approach #behaviour
Stack Overflow Badges and User Behavior: An Econometric Approach (AM), pp. 450–453.
MSRMSR-2015-PonzanelliML15a #named
StORMeD: Stack Overflow Ready Made Data (LP, AM, ML), pp. 474–477.
MSRMSR-2015-RahmanR
An Insight into the Unresolved Questions at Stack Overflow (MMR, CKR), pp. 426–429.
MSRMSR-2015-SlagWB #why
One-Day Flies on StackOverflow — Why the Vast Majority of StackOverflow Users Only Posts Once (RS, MdW, AB), pp. 458–461.
MSRMSR-2015-ZouXGYYZ #analysis #developer #empirical #non-functional #requirements #topic #using
Which Non-functional Requirements Do Developers Focus On? An Empirical Study on Stack Overflow Using Topic Analysis (JZ, LX, WG, MY, DY, XZ), pp. 446–449.
SANERSANER-2015-GuerroujAR
The influence of App churn on App success and StackOverflow discussions (LG, SA, PCR), pp. 321–330.
SEKESEKE-2015-ZhuSCW #programming #scalability #taxonomy
Building a Large-scale Software Programming Taxonomy from Stackoverflow (JZ, BS, XC, HW), pp. 391–396.
ICSEICSE-v2-2015-SanchezW #source code
Source Code Curation on StackOverflow: The Vesperin System (HS, JW), pp. 661–664.
ICSEICSE-v2-2015-Squire #developer #social #social media
“Should We Move to Stack Overflow?” Measuring the Utility of Social Media for Developer Support (MS), pp. 219–228.
ICPCICPC-2014-VasquezBPOP #android #api #case study #how
How do API changes trigger stack overflow discussions? a study on the Android SDK (MLV, GB, MDP, RO, DP), pp. 83–94.
ICSMEICSME-2014-BeyerP #android #categorisation #development
A Manual Categorization of Android App Development Issues on Stack Overflow (SB, MP), pp. 531–535.
ICSMEICSME-2014-PonzanelliMBLF #detection #quality
Improving Low Quality Stack Overflow Post Detection (LP, AM, AB, ML, DF), pp. 541–544.
MSRMSR-2014-PonzanelliBPOL #ide #mining #programming #self
Mining StackOverflow to turn the IDE into a self-confident programming prompter (LP, GB, MDP, RO, ML), pp. 102–111.
ICSMEICSM-2013-BazelliHS #on the
On the Personality Traits of StackOverflow Users (BB, AH, ES), pp. 460–463.
MSRMSR-2013-AllamanisS #topic #what #why
Why, when, and what: analyzing stack overflow questions by topic, type, and code (MA, CAS), pp. 53–56.
MSRMSR-2013-AsaduzzamanMRS
Answering questions about unanswered questions of stack overflow (MA, ASM, CKR, KAS), pp. 97–100.
MSRMSR-2013-BosuCHCCK #empirical
Building reputation in StackOverflow: an empirical investigation (AB, CSC, DH, DC, JCC, NAK), pp. 89–92.
MSRMSR-2013-GomezCS #case study
A study of innovation diffusion through link sharing on stack overflow (CG, BC, LS), pp. 81–84.
MSRMSR-2013-MorrisonM #programming
Is programming knowledge related to age? an exploration of stack overflow (PM, ERMH), pp. 69–72.
MSRMSR-2013-SahaSS #approach #automation
A discriminative model approach for suggesting tags automatically for stack overflow questions (AKS, RKS, KAS), pp. 73–76.
MSRMSR-2013-VasquezDP #analysis #development #mobile #using
An exploratory analysis of mobile development issues using stack overflow (MLV, BD, DP), pp. 93–96.
SIGIRSIGIR-2013-DalipGCC #case study #feedback #rank
Exploiting user feedback to learn to rank answers in q&a forums: a case study with stack overflow (DHD, MAG, MC, PC), pp. 543–552.
ESEC-FSEESEC-FSE-2013-SahaSP #case study #comprehension #towards
Toward understanding the causes of unanswered questions in software information sites: a case study of stack overflow (RKS, AKS, DEP), pp. 663–666.
ICSEICSE-2013-PonzanelliBL #ide #named
Seahawk: stack overflow in the IDE (LP, AB, ML), pp. 1295–1298.
SACSAC-2013-WangLJ #developer #empirical #interactive
An empirical study on developer interactions in StackOverflow (SW, DL, LJ), pp. 1019–1024.
ICSMEICSM-2012-NasehiSMB #case study #programming #what
What makes a good code example?: A study of programming Q&A in StackOverflow (SMN, JS, FM, CB), pp. 25–34.
KDDKDD-2012-AndersonHKL #case study #community #process
Discovering value from community activity on focused question answering sites: a case study of stack overflow (AA, DPH, JMK, JL), pp. 850–858.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.